Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 536-557, sept. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1369226

ABSTRACT

This study determined phytochemical composition, antifungal activity and toxicity in vitro and in vivo of Syzygium cumini leaves extract (Sc). Thus, was characterized by gas chromatography coupled to mass spectrometry and submitted to determination of Minimum Inhibitory (MIC) and Fungicidal concentrations (MFC) on reference and clinical strains of Candida spp. and by growth kinetics assays. Toxicity was verified using in vitro assays of hemolysis, osmotic fragility, oxidant and antioxidant activity in human erythrocytes and by in vivo acute systemic toxicity in Galleria mellonella larvae. Fourteen different compounds were identified in Sc, which showed antifungal activity (MIC between 31.25-125µg/mL) with fungistatic effect on Candida. At antifungal concentrations, it demonstrated low cytotoxicity, antioxidant activity and neglible in vivotoxicity. Thus, Sc demonstrated a promising antifungal potential, with low toxicity, indicating that this extract can be a safe and effective alternative antifungal agent.


Este estudio determinó la composición fitoquímica, la actividad antifúngica y la toxicidad in vitro e in vivo del extracto de hojas de Syzygium cumini (Sc). Así, se caracterizó mediante cromatografía de gases acoplada a espectrometría de masas y se sometió a determinación de Concentraciones Mínimas Inhibitorias (CMI) y Fungicidas (MFC) sobre cepas de referencia y clínicas de Candida spp. y mediante ensayos de cinética de crecimiento. La toxicidad se verificó mediante ensayos in vitro de hemólisis, fragilidad osmótica, actividad oxidante y antioxidante en eritrocitos humanos y por toxicidad sistémica aguda in vivo en larvas de Galleria mellonella. Se identificaron catorce compuestos diferentes en Sc, que mostraron actividad antifúngica (CMI entre 31.25-125 µg/mL) con efecto fungistático sobre Candida. En concentraciones antifúngicas, demostró baja citotoxicidad, actividad antioxidante y toxicidad in vivo insignificante. Por lo tanto, Sc demostró un potencial antifúngico prometedor, con baja toxicidad, lo que indica que este extracto puede ser un agente antifúngico alternativo seguro y eficaz.


Subject(s)
Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Syzygium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida/drug effects , Plant Extracts/toxicity , Microbial Sensitivity Tests , Toxicity Tests , Plant Leaves/chemistry , Phenolic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Antifungal Agents/toxicity , Antioxidants
2.
Braz. j. microbiol ; 45(4): 1349-1355, Oct.-Dec. 2014. tab
Article in English | LILACS | ID: lil-741286

ABSTRACT

In the last times, focus on plant research has increased all over the world. Euphorbia tirucalli L., a plant known popularly as Aveloz, and originally used in Africa, has been drawing attention for its use in the United States and Latin America, both for use as an ornamental plant and as a medicinal plant. E. tirucalli L. is a member of the family Euphorbiaceae and contains many diterpenoids and triterpenoids, in particular phorbol esters, apparently the main constituent of this plant, which are assumed to be responsible for their activities in vivo and in vitro. The in vitro antifungal activities of Euphorbia tirucalli (L.) against opportunistic yeasts were studied using microbroth dilution assay. The results showed that aqueous extract and latex preparation were effective against ten clinical strains of Cryptococcus neoformans in vitro (Latex and extract MIC range of 3.2 - > 411 µg/mL). Aiming the safe use in humans, the genotoxic effects of E. tirucalli were evaluated in human leukocytes cells. Our data show that both aqueous extract and latex preparation have no genotoxic effect in human leukocytes cells in vitro. Although the results cannot be extrapolated by itself for use in vivo, they suggest a good perspective for a therapeutic application in future. In conclusion, our results show that the aqueous extract and latex preparation from E. tirucalli L. are antifungal agents effectives against several strains of C. neoformans and do not provoke DNA damage in human leukocyte cells, considering the concentrations tested.


Subject(s)
Humans , Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Euphorbiaceae/chemistry , Leukocytes/drug effects , Mutagens/toxicity , Plant Extracts/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/toxicity , Microbial Sensitivity Tests , Mutagenicity Tests , Mutagens/isolation & purification , Plant Extracts/isolation & purification , Plant Extracts/toxicity
3.
Braz. j. microbiol ; 45(2): 523-531, Apr.-June 2014. tab
Article in English | LILACS | ID: lil-723118

ABSTRACT

Emergence of drug-resistant strains has demanded for alternative means of combating fungal infections. Oils of Carum copticum and Thymus vulgaris have long been used in ethnomedicine for ailments of various fungal infections. Since their activity has not been reported in particular against drug-resistant fungi, this study was aimed to evaluate the effects of oils of C. copticum and T. vulgaris on the growth and virulence of drug-resistant strains of Aspergillus spp. and Trichophyton rubrum. The gas chromatography-mass spectrometry analysis revealed thymol constituting 44.71% and 22.82% of T. vulgaris and C. copticum, respectively. Inhibition of mycelial growth by essential oils was recorded in the order of thymol > T. vulgaris > C. copticum against the tested strains. RBC lysis assay showed no tested oils to be toxic even up to concentration two folds higher than their respective MFCs. Thymol exhibited highest synergy in combination with fluconazole against Aspergillus fumigatus MTCC2550 (FICI value 0.187) and T. rubrum IOA9 (0.156) as determined by checkerboard method. Thymol and T. vulgaris essential oil were equally effective against both the macro and arthroconidia growth (MIC 72 µg/mL). A > 80% reduction in elastase activity was recorded for A. fumigatus MTCC2550 by C. copticum, T. vulgaris oils and thymol. The effectiveness of these oils against arthroconidia and synergistic interaction of thymol and T. vulgaris with fluconazole can be exploited to potentiate the antifungal effects of fluconazole against drug-resistant strains of T. rubrum and Aspergillus spp.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Carum/chemistry , Plant Oils/pharmacology , Thymus Plant/chemistry , Trichophyton/drug effects , Antifungal Agents/isolation & purification , Antifungal Agents/toxicity , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/physiology , Drug Synergism , Erythrocytes/drug effects , Fluconazole/pharmacology , Gas Chromatography-Mass Spectrometry , Pancreatic Elastase/antagonists & inhibitors , Plant Oils/chemistry , Plant Oils/isolation & purification , Plant Oils/toxicity , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Thymol/analysis , Trichophyton/physiology , Virulence/drug effects
4.
Braz. j. microbiol ; 43(4): 1302-1308, Oct.-Dec. 2012. tab
Article in English | LILACS | ID: lil-665812

ABSTRACT

Ethanol extracts from six selected species from the Cerrado of the Central-Western region of Brazil, which are used in traditional medicine for the treatment of infectious diseases and other medical conditions, namely Erythroxylum suberosum St. Hil. (Erythroxylaceae), Hyptis crenata Pohl. ex Benth. (Lamiaceae), Roupala brasiliensis Klotz. (Proteaceae), Simarouba versicolor St. Hil. (Simaroubaceae), Guazuma ulmifolia Lam. (Sterculiaceae) and Protium heptaphyllum (Aubl.) March. (Burseraceae), as well as fractions resulting from partition of these crude extracts, were screened in vitro for their antifungal and antibacterial properties. The antimicrobial activities were assessed by the broth microdilution assay against six control fungal strains, Candida albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis and Cryptococcus neoformans, and five control Gram-positive and negative bacterial strains, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Toxicity of the extracts and fractions against Artemia salina was also evaluated in this work. All plants investigated showed antimicrobial properties against at least one microorganism and two species were also significantly toxic to brine shrimp larvae. The results tend to support the traditional use of these plants for the treatment of respiratory and gastrointestinal disorders and/or skin diseases, opening the possibility of finding new antimicrobial agents from these natural sources.Among the species investigated, Hyptis crenata, Erythroxylum suberosum and Roupala brasiliensis were considered the most promising candidates for developing of future bioactivity-guided phytochemical investigations.


Subject(s)
Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/toxicity , Antifungal Agents/analysis , Antifungal Agents/toxicity , Dilution/methods , Ethanol/analysis , Plant Extracts/toxicity , In Vitro Techniques , Plants, Medicinal/toxicity , Grassland , Methods
5.
Rev. bras. plantas med ; 13(2): 240-245, 2011. ilus, tab
Article in Portuguese | LILACS | ID: lil-596401

ABSTRACT

Atualmente o uso de métodos alternativos para o controle de doenças e pragas na agricultura, visando minimizar os danos ao meio ambiente e à saúde pública é uma prática reconhecida e necessária. Este trabalho objetivou investigar a ação do óleo essencial de Syzygium aromaticum (L.) Merr. & L.M.Perry sobre o crescimento micelial in vitro dos fungos fitopatogênicos Rhizoctonia solani, Fusarium solani, Fusarium oxysporum e Macrophomina phaseolina. A análise por cromatografia gasosa acoplada com espectrometria de massa possibilitou a identificação de eugenol (83,6 por cento), acetato de eugenila (11,6 por cento) e cariofileno (4,2 por cento). A avaliação microscópica dos micélios dos fungos evidenciou diversas alterações morfológicas, como a presença de vacúolos, desorganização dos conteúdos celulares, diminuição na nitidez da parede celular, intensa fragmentação e menor turgência das hifas. O óleo essencial de cravo apresentou atividade fungicida na concentração de 0,15 por cento sobre o crescimento de R. solani, F. oxysporum e F. solani, entretanto não demonstrou essa atividade sobre M. phaseolina. Esses resultados indicam perspectivas favoráveis para posterior uso do óleo de cravo no controle desses fitopatógenos na agricultura.


Currently, the use of alternative methods to control diseases and pests in agriculture has been a recognized and necessary practice to minimize damages to the environment and public health. This study aimed to investigate the action of clove [Syzygium aromaticum (L.) Merr. & L.M.Perry] essential oil on the in vitro mycelial growth of the phytopathogenic fungi Rhizoctonia solani, Fusarium solani, Fusarium oxysporum and Macrophomina phaseolina. Analysis by gas chromatography-mass spectrometry allowed the identification of eugenol (83.6 percent), eugenyl acetate (11.6 percent) and caryophyllene (4.2 percent). Microscopic evaluation of mycelia showed several morphological changes such as presence of vacuoles, cell content disorganization, decreased cell wall clearness, intense fragmentation and lower turgescence of hyphae. Clove essential oil showed fungicidal activity at 0.15 percent on the growth of R. solani, F. oxysporum and F. solani, but not for M. phaseolina. These results indicate favorable perspectives for future use of clove essential oil to control these phytopathogens in agriculture.


Subject(s)
Eugenia/parasitology , Eugenia/chemistry , Fungi , Hyphae/isolation & purification , Oils, Volatile/analysis , Oils, Volatile/adverse effects , Antifungal Agents/analysis , Antifungal Agents/toxicity
6.
Rev. Soc. Bras. Med. Trop ; 42(2): 110-113, Mar.-Apr. 2009. ilus, tab
Article in English | LILACS | ID: lil-512911

ABSTRACT

The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7mg mL-1 for hexane extract and 8.87mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-¹, from 0.312 to 0.625mg mL-1 and from 0.031 to 0.625mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625mg mL-1, from 0.08 to 0.156mg mL-1 and from 0.312 to 0.625mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.


O presente estudo teve como objetivo testar os extratos hexânico e metanólico das sementes do abacate, a fim de determinar sua toxicidade em Artemia salina, avaliar a atividade larvicida frente ao Aedes aegypti, bem como verificar o potencial antifúngico in vitro contra cepas de Candida spp, Cryptococcus neoformans e Malassezia pachydermatis, através da técnica de microdiluição. Os extratos hexânico e metanólico das sementes de abacate apresentaram no teste de toxicidade frente à Artemia salina, valores de LC50 2,37 e 24,13mg L-1, respectivamente; contra as larvas do Aedes aegypti os resultados obtidos foram LC50 16,7mg L-1 para o extrato hexânico e 8,87mg L-1 para o extrato metanólico das sementes do abacate. Os extratos testados também foram ativos contra todas as cepas de leveduras, testadas in vitro, apresentando diferentes resultados, onde o MIC do extrato hexânico variou de 0,625 a 1,25mg mL-1, de 0,312 a 0,625mg mL-1 e de 0,031 a 0,625mg mL-1 para as cepas de Candida spp., Cryptococcus neoformans e Malassezia pachydermatis, respectivamente. O intervalo de MIC para o extrato metanólico foi de 0,125 a 0,625mg mL-1, 0,08 a 0,156mg mL-1 e de 0,312 a 0,625mg mL-1, para as exemplares de Candida spp., Cryptococcus neoformans e Malassezia pachydermatis, respectivamente.


Subject(s)
Animals , Aedes/drug effects , Antifungal Agents/pharmacology , Artemia/drug effects , Mitosporic Fungi/drug effects , Persea/chemistry , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Candida/drug effects , Cryptococcus neoformans/drug effects , Larva/drug effects , Microbial Sensitivity Tests , Malassezia/drug effects , Seeds/chemistry , Seeds/toxicity
7.
Pakistan Journal of Pharmaceutical Sciences. 2009; 22 (2): 131-138
in English | IMEMR | ID: emr-92337

ABSTRACT

The objective of the study was to design and evaluate Itraconazole loaded solid lipid nanoparticles [SLNs] drug delivery system, where Itraconazole nanoparticles with suitable size ranges are expected to improve the therapeutic efficacy and reduction of toxicity of this broad spectrum antifungal agent. Components of the SLNs were lipid [palmitic acid] and surfactants [Pluronic F127 and Tween 40]. The Itraconazole loaded nanoparticles were prepared by microemulsion dispersion method. Experiments were carried out with optimized ratio of excipients, where drug-lipid ratio and surfactant-cosurfactant ratio [Km] were varied to optimize the formulation characteristics. The effects of dispersion media, its pH, ionic content, etc. were investigated to optimize the SLNs production. Particles size analysis and zeta potential measurements were done using Malvern Mastersizer Hydro 2000G. The particles were also subjected to DSC, IR and XRD analyses. The in vitro drug release profile from nanoparticles was found to prolong up to 12h. Kinetic analysis of release indicated that nanoparticles formed were matrix in nature, in which Itraconazole dispersed uniformly. Optimized formulations were found to have a lipid-drug ratio of 1.5:1 and prepared at a Km ratio of 1:2 to maximize drug loading, modulate release and minimized particle size. The microemulsion mediated nanoparticle preparation methodology ensured high drug loading [ca. 80%], low and narrow size distribution and provided a reproducible and fast production method. The study elaborates on the feasibility and suitability of lipid based colloidal drug delivery system, employing optimize design to develop a clinically useful nanoparticle system with targeting potential


Subject(s)
Drug Delivery Systems , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Calorimetry, Differential Scanning , Nanoparticles
8.
Rev. chil. infectol ; 21(2): 89-101, jun. 2004. ilus, tab
Article in Spanish | LILACS | ID: lil-363587

ABSTRACT

La familia de lipopéptidos conocidos como equinocandinas emerge como las nuevas "penicilinas antifúngicas", capaces de destruir la pared celular micótica al inhibir la síntesis del glucano, fundamental constituyente de la estructura fúngica. Las equinocandinas han mostrado in vitro e in vivo, ser fungicidas contra la mayoría de las especies de Candida y fungistáticas contra Aspergillus sp, sin exhibir acción sobre células de mamíferos. Tres agentes emergen como los principales representantes de esta clase; caspofungina, micafungina y anidulafungina, estando las dos primeras ya licenciadas para su uso en humanos. Su óptimo perfil de seguridad, con baja incidencia y severidad de efectos adversos, cómoda posología y pocas interacciones con otros fármacos, representan notables ventajas para la terapéutica antifúngica moderna. Comparativamente han mostrado tener eficacia clínica similar a anfotericina B, sin la toxicidad que este polieno tradicionalmente muestra, lo que sumado a la ausencia de antagonismo con otros antifúngicos permite sugerir que la terapia combinada pudiera ser un nuevo estándar de manejo para la tan temida aspergilosis invasora.


The lipopeptide family known as echinocandins emerge as the new "antifungal penicillins", because their ability to destroy the fungal cell wall as they inhibit glucan synthesis, the main component of fungal structure. Echinocandins are fungicidal in vitro and in vivo against most Candida species and fungistatic against Aspergillus sp, without antifungal activity over mammal cells. Three drugs are representative of this class; caspofungin, micafungin and anidulafungin, the two first have been licensed for human use. Their optimal security profile, with low incidence and severity of adverse effects, kind posology and few interactions with other drugs, represent noticeable advantages for modern antifungal therapy. They have similar clinical efficacy as amphotericin B, without its toxicity, which besides the absence of antagonism with other antifungal drugs, allows to suggest that combined antifungal therapy could represent a new standard for the management of the feared invasive aspergillosis.


Subject(s)
Humans , Antifungal Agents/pharmacology , Echinocandins/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Clinical Trials as Topic , Echinocandins/physiology , Echinocandins/chemistry , Echinocandins/toxicity
12.
Indian J Exp Biol ; 1983 Jan; 21(1): 31-3
Article in English | IMSEAR | ID: sea-56460
13.
Hindustan Antibiot Bull ; 1968 Feb; 10(3): 206-8
Article in English | IMSEAR | ID: sea-2401
14.
Hindustan Antibiot Bull ; 1965 Nov; 8(2): 75-6
Article in English | IMSEAR | ID: sea-2346
SELECTION OF CITATIONS
SEARCH DETAIL